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I .  Phys. A. Math. Gen. 27 (1994) 5265-5271. Printed in the UK 

Exact asymptotics for the laser linewidth 

G S Joyce, E R Pike and Sarben Sarkar 
Wheatstone Physics Laboratory. King's College. Svand, London WCZJR 2LS, UK 

Received 14 February 1994 

Abstrab. The Scully-Lamb solution for the diagonal density matrix elements pnn of the 
radiation field of the laser in the photon number basis is used to obtain an expression for the 
laser linewidth A, assuming thal he Glauber photon correlation function GcZ1(r) is dominated by 
a single relaxation me. In the steady State it is shown that this laser tinewidth can be evaluated 
exactly in terms of the confluent hypergeometric functions I F1 and zFz. Well above threshold 
we perform a Borel-type summation of the asymptotic series for the hynemeomehic functions 
to establish a remarkably simple representation for the laser linewidth. 

1. Introduction 

There has been renewed interest in an approximate formula for the linewidth I of the 
intensity fluctuation spectrum of a radiation source (Jakeman and Loudon 1991). This 
formula may be found from the expression for the second-order photon correlation function 
of the radiation field (Glauber 1963) 

G'"(r) = (U' (0)at (?)a (?)u(O)) (1.1) 

where at(s)  and a(?) are the creation and annihilation operators, respectively, for the laser 
mode, by assuming that this function is dominated by a single relaxation time. Under these 
circumstances we can write 

(1.2) G(')(r) w (n)'+ [(n(n - 1)) - (n) 1 ]e  -Ar 

where n is the photon number. Consequently the intensity fluctuation spectral width A can 
be obtained from the relation (Jakeman and Pike 1971) 

This assumption is sufficiently accurate for most practical purposes (pike 1969). In terms 
of the density matrix p ( r )  we also have 

G'*)(?) = @S.B [P(0)at(O)at(r)a(?)a(O)] 

= ES.B [ p ( ~ ) a t ( O )  exp(iHs/h)at(O)a(O) exp(-i~r/h)a(o)] (1.4) 

= uS.B [exp(-iHr/fi)a(O)p(O)a+(O) exp(i~r/h)a+(o)a(o)] 

where S and B denote the laser mode and bath degrees of freedom, respectively. 
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We now define 

,ya.t(r) = exp(-ihlr/h)a(O)p(0)af(O) exp(iHr/ft). (1.5) 

This operator has the same form of time evolution as p ( ~ )  since it is govemed by the same 
Hamiltonian H. Hence if the evolution of the density matrix for the laser mode is described 
by the well known Scully-Lamb master equation (Scully and Lamb 1967) then we can 
express the rate of change of 

%d(r) = b[Xu~t(r)l (1.6) 

in the form 

- Cn[ ,?an l ( r ) lnn  + c ( n  I)[,?aat(r)lnt~,ntl (1.7) 

where 

[ , ? o d ( r ) l n n  (nl.?mt(r)ln) (1.8) 

In) is a number state of the laser mode containing n quanta, A and B are the linear gain 
and self-saturation coefficients, respectively, and C represents cavity damping. Since 

we have 

On evaluating the matrix elements we find that 

(1.11) 
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If we collect together terms we finally obtain 
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(1.12) 

Hence, apart from the use of the single-rate relaxation approximation our treatment is exact. 
For the Scully-Lamb theory in the steady state we have 

(1.13) 

where U = A z / ( E C ) ,  U = A / B  and (a),  = r ( n  + a ) / r ( a )  denotes the Pochhammer 
symbol. Jakeman and Loudon (1991) made the approximation 

which is valid for U >> 1 . Further approximations were needed in their analysis. For 
example, well above threshold, they assumed that 

(1.15) 

Given the narrowness of the distribution this may seem a reasonable approximation but 
there is no conwol over the errors introduced. We shall show, however, that it is possible 
to analyse the behaviour of h without using such approximations. 

2. Exact formula for X 

From the results (1.12) and (1.13) we readily find that 

where 

We can express S(u, U) in the alternative form 

From this result we obtain 

2u(1 + ") zFz(3,2+ U ;  3 + U ,  3 + U ;  U) S(u, U) = zFz(2.1 + U ;  2 + U, 2 + U ;  U) t (2.4) (2 t U P  

where ~ F z  denotes a generalized confluent hypergeometric function. 
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Next we determine the average values (n) and (n(n - 1)) by first introducing the 
probability generating function 

If we substitute (2) in this equation it is found that 

The application of the standard formula (Luke 1969, p 117) 

to (2.6) yields the following expression for the factorial moments of the photon-counting 
distribution: 

m!um I F l ( l + m ; l + u + m ; u )  (n(n - 1). . . (n - m + 1)) = - . (2.8) 
(1+u)m 1F1(1;1+u;u) 

Hence we have 

U 1F1(2;2+w;u) 
(1 + U )  1F1(1; 1 + U ;  U) 

(n) = - 

2 ~ '  I Fi(3; 3 + U; U )  (n(n - 1)) = 
(1 + u ) ( ~ + u )  lFi(1; 1 + u ; u ) '  

(2.9) 

(2.10) 

We can now use equations (1.3). (2.11, (2.41, (2.9) and (2.10) to derive an exact expression 
for the spectral linewidth 1 in terms of confluent hypergeometric functions. 

It is interesting to note that the I F ]  functions in (2.9) and (2.10) can all be expressed 
in terms of the incomplete gamma function y(n,  U), To derive these results we first apply 
the Kummer @ansformation (Abramowitz and Sfegun 1965, p 505) 

lF l (a;  c; U )  =eu - -a ;c ;  -U) (2.11) 

to the confluent hypergeometk function lF1(l; 1 + U; U )  and then use the relation 
(Abramowitz and Stegun 1965, p 509) 

14 (u ;  1 + U ;  - U )  = vu-" y(u, U).  (2.12) 

Hence we obtain the identity 

]FI(1; 1+u;u)=uu-"e"y(u ,~) .  (2.13) 

The application of formula (2.7) to this result yields the further relations 

I ~ ~ ( ~ ; 2 + w ; u ) = ( 1 + u ) [ 1 + u - " e ~ y ( l + u , u ) ( 1 - ~ ) ]  U (2.14) 

(2.15) 
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3. Asymptotic behaviour of X as U + +cm 

The behaviour of A well above the threshold can be determined by investigating the 
asymptotic properties of the various coduent hypergeometric functions as U + +CO, with 
U fixed. From the general analysis of Luke (1969, pp 201-2) we find that 

m 

~ F Z ( Z ,  1 + u ; ~ + u , ~ + u ; u ) - ( l  + u ) r ( 2 + u ) u - ~ - ~ e ~ C g t u - k  (3.1) 
k=O 

as U + +CO with U fixed, where the coefficient g k  satisfies the three-term recurrence relation 

(k + l)gk+i - (2k2 + k u  - ~ ) g r  + (k - 1)'(k + ~)gr- i  = 0 (3.2) 

with the initial conditions go = 1 and g-, 
simple formula 

0. From relation (3.2) we obtain the surprisingly 

gk = - ~ ( k  - l)!  (k 1). (3.3) 

This result is consistent with the prototype form for the lute terms in a general asymptotic 
series which was proposed by Dingle (1973). The substitution of (3.3) in (3.1) gives the 
Mth-order asymptotic representation 

(3.4) 

as U + +CO, with M = 0 , l .  2, .  . . fixed. In a similar manner it can also be shown that 

1 
2 2F2(3,2+v; 3+u, 3+u; U )  - - (2+u)r (3+u)~-~-"e~  

(3.5) 

as U + +CO, with M = 0,1,2,. . . fixed. 

series in (3.4) and (3.5) we introduce the entire function (Wong 1989) 
In order to obtain a Borel-type integral representation (Dingle 1973) for the factorial 

dt (3.6) 

where U 0. It is possible to express this function in the following alternative forms: 

n(u) =uzFz( l , 1 ;2 ,2 ;u )  (3.7) 

Q ( u )  = - y  - In(u) + Ei(u) (3.8) 

where y is the Euler constant and Ei(u) is the exponential integral (Abramowitz and Stegun 
1965, p 228). For large positive values of U the function n(u) has an Mth-order asymptotic 
representation (Wong 1989) 

(3.9) 

as U + +CO, with M = 0.1,2,. . . fixed. 
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The application of (3.9) to (3.4) and (3.5) gives the further closed-form asymptotic 
representations 

2 ~ 2 ( 2 , 1 +  U; 2 + U ,  2 + U ;  U) - (1 + ~ ) r ( 2  + u)u-l-ueu [ 1 - U ~ - ~ Q ( U ) ]  (3.10) 

as U + +co, with U fixed. These simple formulae appear to be new results for non-inregral 
values of U. When U = 0.1.2, ... both the ZFZ functions in (3.10) and (3.11) can be 
expressed exactly in terms of the function Q(u) .  For example, for the case U = 1 we find 
(Wolfram 1991) 

4 4 
2~2(2,2;  3,3; U) = -eu [I - e- '~(u) ]  - 7 

112 U 
(3.12) 

(3.13) 

We see, therefore, that for U = 0, 1,2, . . . we can write down exact formulae for the error 
terms in the asymptotic representations (3.10) and (3.1 1). This feature provides one with 
some justification for introducing the function Q(u) into the analysis. Moreover in this case 
it could be interesting to construct hyperasymptotics (Berry and Howls 1990) and check the 
error against the known exact answer. 

The asymptotic behaviour of the 1 Fl functions in (2.13)+15) can be readily determined 
by applying the standard expansion (Abramowitz and Stegun 1965, p 263) 

M 
y(a, U) - r(a) - uO-'e-u Z(-I)~(I - a),u-" (3.14) 

"=O 

as U -+ +w, with M = 0,1,2,. . . fixed. This procedure yields the representations 

lFl(l;  1 + U ;  U )  - r(l + u)u-"eu 

I Fl(2; 2 + U; U) - r(2 + u)u-"eU 

(3.15) 

(3.16) 

(3.17) 

as U + fw, with U fixed. If these results are substituted in (2.9) and (2.10) we find that 

(3.18) 

(3.19) 

as U +co, with U fixed. Hence we obtain the asymptotic representation 

[h(n - 1)) - w*] - U  (3.20) 
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as U + +CO, with U fixed. The leading-order correction term to the formula (3.20) is 
-*I+” -U 

We now substitute (2.4) in (2.1) and apply the asymptotic relations (3.10), (3.11), (3.15) 
and (3.19). In this manner we find 

e I W ) .  

as U --f +CO. From this result and equations (1.3) and (3.20) we readily see that the 
asymptotic behaviour of the spectral linewidth is 

A - C[1 - u{ue-’Q(u) - 111 (3.22) 

as U + +CO, with v fixed. The application of (3.9) to (3.22) gives the alternative Mth-order 
asymptotic representation 

M 

as U + +CO, with M = 0,1,2.. . . fixed. The first-order representation of (3.23) is 

A - C (1 - :) 

(3.23) 

(3.24) 

as U + +CO, with U fixed. This result is consistent with the work of Jakeman and Loudon 
(1991). 

Finally, we check the analysis by evaluating the asymptotic formula (3.22) for the case 
U = and U = 20. It is found that 

A/C ss 0.972022 12. (3.25) 

This result is in excellent agreement with the exact value 

h /C = 0.972022233.. . . (3.26) 
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